Detecting Gravitational-Wave Memory with LIGO: Implications of GW150914.
نویسندگان
چکیده
It may soon be possible for Advanced LIGO to detect hundreds of binary black hole mergers per year. We show how the accumulation of many such measurements will allow for the detection of gravitational-wave memory: a permanent displacement of spacetime that comes from strong-field, general relativistic effects. We estimate that Advanced LIGO operating at design sensitivity may be able to make a signal-to-noise ratio 3 (5) detection of memory with ∼35 (90) events with masses and distance similar to GW150914. We highlight the importance of incorporating higher-order gravitational-wave modes for parameter estimation of binary black hole mergers, and describe how our methods can also be used to detect higher-order modes themselves before Advanced LIGO reaches design sensitivity.
منابع مشابه
Remarks on Graviton Propagation in Light of GW 150914
The observation of gravitational waves from the Laser Interferometer Gravitational-Wave Observatory (LIGO) event GW150914 may be used to constrain the possibility of Lorentz violation in graviton propagation, and the observation by the Fermi Gamma-Ray Burst Monitor of a transient source in apparent coincidence may be used to constrain the difference between the velocities of light and gravitati...
متن کاملTheoretical Physics Implications of the Binary Black-Hole Mergers GW150914 and GW151226
The gravitational wave observations GW150914 and GW151226 by Advanced LIGO provide the first opportunity to learn about physics in the extreme gravity environment of coalescing binary black holes. The LIGO Scientific Collaboration and the Virgo Collaboration have verified that this observation is consistent with Einstein’s theory of General Relativity, constraining the presence of certain param...
متن کاملRadio Follow-up of Gravitational-wave Triggers during Advanced Ligo O1
We present radio follow-up observations carried out with the Karl G. Jansky Very Large Array during the first observing run (O1) of the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO). A total of three gravitational wave triggers were followed up during the ≈ 4 months of O1, from September 2015 to January 2016. Two of these triggers, GW150914 and GW151226, are binary black h...
متن کاملEvidence of gravitational waves, or evidence of confirmation bias?
On February 11 2016 the LIGO Scientific Collaboration announced the discovery of gravitational waves. Their announcement has been met with a great deal of excitement and enthusiasm by the scientific community. However, a careful and detailed analysis of the published papers, and other internal LIGO documents, reveal critical scientific methodology problems and unresolved questions surrounding t...
متن کاملObservation of Gravitational Waves from a Binary Black Hole Merger
This cataclysmic event, producing the gravitational-wave signal GW150914, took place in a distant galaxy more than one billion light years from the Earth. It was observed on September 14, 2015 by the two detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO), arguably the most sensitive scientific instruments ever constructed. LIGO estimated that the peak gravitational-wave...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 117 6 شماره
صفحات -
تاریخ انتشار 2016